INTRODUCTION TO NATURAL LANGUAGE PROCESSING

Natalie Parde parde@uic.edu

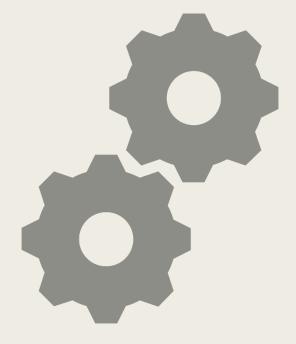
CS 594: Language and Vision Spring 2019

What is natural language processing?

The study of language and linguistic interactions from a computational perspective, enabling the development of algorithms and models capable of (a) natural language understanding (NLU) and (b) natural language generation (NLG).

Core Terminology

- N-gram
- Corpus
- Text Normalization
- POS Tagging
- Dependency Parsing
- Stemming
- Lemmatization



N-gram

- A unit of text, of length *n*
- Most common n-grams:
 - Unigram
 - Bigram
 - Trigram
 - 4-gram
 - 5-gram
- Text unit can be an individual character (useful for language identification) or an individual word (useful for text classification)

Corpus

- Plural: Corpora
- Synonym: Dataset
- A generally large (although this is not a requirement) collection of text or speech data, used to train machine learning models for natural language processing tasks.
- Example Corpora:
 - Google Books N-gram Corpus: <u>http://storage.googleapis.com/books/</u> <u>ngrams/books/datasetsv2.html</u>
 - British National Corpus: <u>http://www.natcorp.ox.ac.uk/</u>
 - Metaphor Novelty Dataset: <u>http://hilt.cse.unt.edu/resources.html</u> <u>#metaphor_novelty_dataset</u>

Text Normalization

- A sequence of actions applied to unstructured text to convert it into a more useful form for further text processing.
- Often includes:
 - Sentence segmentation
 - Tokenization
- Depending on task:
 - Punctuation removal
 - Contraction handling
 - URL removal
 - Case adjustment

What do you think they'll do next?

what, do, you, think, they, will, do, next

POS Tagging

- Full term: Part-of-Speech Tagging
- Automatically tagging a token of text with its syntactic part of speech
 - Part of speech: a category of words with similar grammatical properties (e.g., nouns)
- Common POS tag sets:
 - Penn Treebank: <u>https://www.ling.upenn.edu/courses/</u> <u>Fall_2003/ling001/penn_treebank_po</u> <u>s.html</u>
 - Universal POS Tags: <u>https://universaldependencies.org/u/</u> <u>pos/</u>

WP

VBP PRP VB

PRP MD VB

What do you think they 'll do next?

j) i

© 2019 Natalie Parde

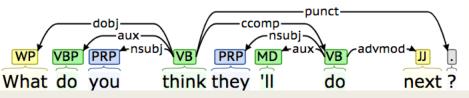
What do you think they'll do next?

Dependency Parsing

- Automatically tagging pairs of syntactically related words with their grammatical relation type
- Common dependency type sets:
 - Universal Dependencies: <u>https://universaldependencies.org/</u>
 - Stanford Dependencies: <u>https://nlp.stanford.edu/software/dependencies_manual.pdf</u>

Differs from a constituency parser:

- Dependency parser: Word pairs are connected based on syntactic relationship
- Constituency parser: Text is broken into a hierarchical tree of subphrases, with terminal nodes corresponding to words in the source text and non-terminal nodes corresponding to phrase types



© 2019 Natalie Parde

Stemming

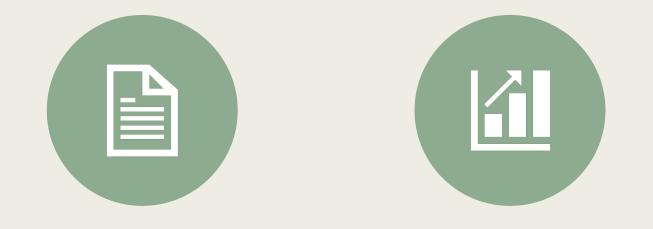
- Removing identified prefixes and suffixes from words
 - Flies \rightarrow fli
 - Mules \rightarrow mule
 - Agreed \rightarrow agre
 - $Owned \rightarrow own$
 - Traditional \rightarrow tradit
- Can be done heuristically without a dictionary

Lemmatization

- Reduces words to their base form
 - Flies \rightarrow fly
 - Mules \rightarrow mule
 - Agreed \rightarrow agree
 - Owned \rightarrow own
 - Traditional \rightarrow tradition
- Requires a dictionary
- Lemmatizers are more accurate and useful than stemmers, but also much more difficult to implement!

Popular Tools for Core NLP Tasks

Two Main Approaches to NLP



RULE-BASED STATISTICAL

- Extracting information from text patterns
- Generating language by filling slots
- Pros:
 - Quicker to implement
 - Produces "normal-sounding" text in target scenarios
 - No processing overhead
- Cons:
 - Heavily constrained
 - Only works in target scenarios
 - Difficult to generalize across domains

Rule-based Natural Language Processing

Rule-based Natural Language Processing

- Often used with chatbots
- Classic use case: Eliza
 - <u>https://www.masswerk.at/elizabot/</u>
 - <u>https://youtu.be/RMK9AphfLco</u>

ELIZA: Is something troubling you ? (OU: Yes.
ELIZA: You seem to be quite positive.
(OU: I'm really not!
ELIZA: Do you believe it is normal to be really not ?
OU: No, not really.
ELIZA: Are you saying no just to be negative?
OU: I'm saying no because I think most people are positive.
ELIZA: Do you know anyone else who is saying no because you think
nost people are positive ?
(OU: No.
ELIZA: You are being a bit negative.
OU: That's what I was trying to tell you!
ELIZA: Why do you tell me you were trying to tell I now ?

- Much more common for most NLP tasks
- Uses machine learning to train models from text corpora and applies those models to make predictions about new text
- Pros:
 - Scalable
 - Higher coverage
 - Easier to generalize across domains
- Cons:
 - More development overhead
 - Feature selection, model selection, parameter tuning
 - Greater CPU, RAM, and storage needs
 - Requires training corpus

Statistical Natural Language Processing

= M Gmail	Q Search mail		-			0
- Compose	□· C :	□ - C :				۵
Inbox 3	Primary	Social	Promotions			

STATISTICAL NATURAL LANGUAGE PROCESSING

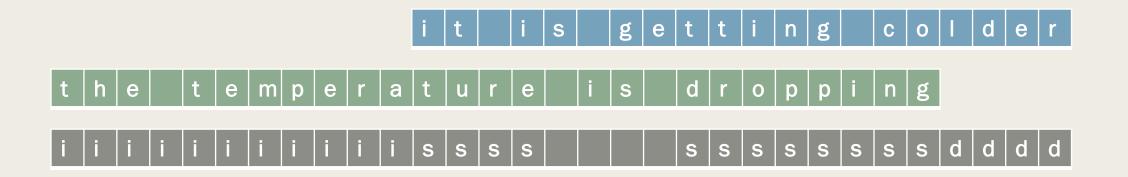
Countless applications, many of which are pervasive in day-to-day life

Think, Pair, Share

- Write three possible applications of rule-based NLP and three possible applications of statistical NLP on your notecard
- Share those ideas with a partner
- Choose one example of each to share with the class
 - Timer: <u>https://www.google.com/search?q=timer</u>

Text Similarity

- Simplest approach: edit distance
- How many transformations (insertions, deletions, or substitutions) are necessary to change one string into another?



Text Similarity

- Common approach: cosine similarity
- Assuming each word in the vocabulary is represented as a point in space, how similar are the vectors representing two sentences?

	it	is	getting	colder	the	temperature	dropping
S1: It is getting colder.	1	1	1	1	0	0	0
S2: The temperature is dropping.	0	1	0	0	1	1	1

$$sim(S1, S2) = \frac{S1 \cdot S2}{\|S1\| \|S2\|} = \frac{\sum_{i=1}^{n} S1_i S2_i}{\sqrt{\sum_{i=1}^{n} S1_i^2} \sqrt{\sum_{i=1}^{n} S2_i^2}}$$

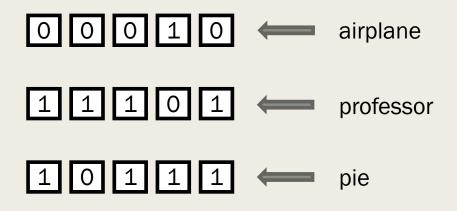
Text Similarity

- What are these approaches missing?
 - Synonyms
 - Paraphrases
 - These approaches compute lexical similarity, but are ignoring semantic similarity!

WORD EMBEDDINGS

Word Embeddings

- Vectors that refer to a word's point in a multidimensional semantic space
- Can be of any size
 - Most common size: 100 or 300 dimensions
- Learned automatically from massive text corpora



Word Embeddings

- Lots of different varieties
- Some of the most popular:
 - Word2Vec
 - GloVe
 - ELMo

- Model learns *n*-dimensional embeddings for two types of vectors:
 - Words
 - Contexts
- Weights for all vectors are initialized to random small numbers
- Weights are updated over time as learning progresses
- When Word2Vec finishes, the weights associated with the word vectors are returned as the **embeddings** and the weights associated with the context vectors are discarded

Winters	in C	hicago	o are	cold.
С	С	W	С	С
8		8	B	8
B	Ë	Ħ	Ħ	

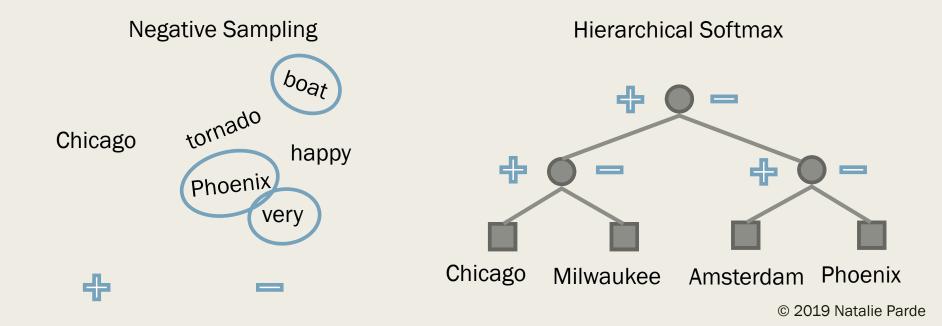
- Word2Vec essentially creates a neural network that we don't really need ...all we're interested in are the learned weights!
- Assuming that σ is an activation function in the output layer of the neural network, and assuming $c_i \in C$ is a context word vector associated with a target word vector w, Word2Vec computes the following:
 - $\sum_{c_i \in C} \sigma(w \cdot c_i)$
- The goal is to learn weights for w and all $c_i \in C$ such that:
 - The value resulting when w is the target word is high
 - The value resulting when *w* is not the target word is low

2	Winters in Chicago are cold.	Winters in Phoenix are cold.	
_	ſ		© 2019 Natalie Parde

Embeddings can be learned in one of two ways:

- Continuous Bag of Words (CBOW): Predict a word given a context
- Skip-gram: Predict a context given a word

- The weights can also be updated using a couple different strategies:
 - Negative Sampling: Randomly sample negative target words rather than computing values for all possible target words
 - Hierarchical Softmax: Iterate through a binary tree in which nodes are weight vectors and leaves are target words—learn weights that are close to those on the correct path to the target word



Count-based Embedding Models

It is freezing cold.

Winters in Chicago are cold.

Winters in Phoenix are warm.

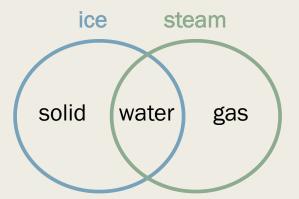
	it	is	freezing	cold	winters	in	chicago	are	phoenix	warm
it	0	1	1	1	0	0	0	0	0	0
is	1	0	1	1	0	0	0	0	0	0
freezing	1	1	0	1	0	0	0	0	0	0
cold	1	1	1	0	1	1	1	1	0	0
winters	0	0	0	1	0	2	1	2	1	1
in	0	0	0	1	2	0	1	2	1	1
chicago	0	0	0	1	1	1	0	1	0	0
are	0	0	0	1	2	2	1	0	1	1
phoenix	0	0	0	0	1	1	0	1	0	1
warm	0	0	0	0	1	1	0	1	1	0

GloVe

- Co-occurrence matrices quickly grow extremely large
- Intuitive solution to increase scalability → dimensionality reduction
 - However, typical dimensionality reduction strategies may result in too much computational overhead
- GloVe combines aspects of predictive models (e.g., Word2Vec) and count-based models
- Learns to predict weights that correspond to the co-occurrence probabilities between words
 - Specifically: The dot product between two words' vectors should equal the logarithm of their probability of cooccurrence

GloVe

- Why is this useful?
 - Predictive models \rightarrow black box
 - They work, but why?
 - GloVe models are easier to interpret
- GloVe models also encode the ratios of co-occurrence probabilities between different words ...this makes these vectors useful for word analogy tasks



ELMo

- Full Term: Embeddings from Language Models
- Accepts character inputs instead of words, which enables the model to predict embeddings for out-of-vocabulary words
- Concatenates information from multiple layers of a bidirectional language model
 - A model that predicts the next word in a sequence of words, given the words that precede it
- This allows ELMo to store multiple representations of the same word!
- Predicts an embedding for a target word given its context

bank

© 2019 Natalie Parde

Which embeddings are best?

- It depends on your data!
- In general, Word2Vec and GloVe produce similar embeddings
- Word2Vec → slower to train but less memory intensive
- GloVe → faster to train but more memory intensive
- Word2Vec and Glove both produce context-independent embeddings
- ELMo produces context-dependent embeddings
- ELMo can predict embeddings for new words

Think, Pair, Share

- Write three possible use cases for word embeddings on your notecard. For each one, indicate what type of word embeddings you think would work best for the task:
 - Word2Vec, GloVe, or ELMo? (Some other type of embedding entirely?)
 - What dataset would they be trained on? (Google Books? Wikipedia? A corpus of news articles? Something else?)
 - If GloVe, any preference between (CBOW X Skip-gram) X (Negative Sampling X Hierarchical Softmax)?
- Discuss these use cases with a partner. Did your partner propose different word embeddings for a similar task?
- Share some clear agreements or differences of opinion with the class.
- Timer: <u>https://www.google.com/search?q=timer</u>

You can experiment with all of these embedding models yourself!

Word2Vec:

Code: https://github.com/tmikolov/wo rd2vec

Pretrained Embeddings: https://code.google.com/archiv e/p/word2vec/ Code: https://github.com/stanfordnlp /GloVe

GloVe:

Pretrained Embeddings: (same website)

ELMo:

Code (AllenNLP version): <u>https://github.com/allenai/alle</u> <u>nnlp/blob/master/tutorials/how</u> <u>to/elmo.md</u>

Code (TensorFlow version): https://github.com/allenai/bilm -tf

> Pretrained Embeddings: https://allennlp.org/elmo

NLP Features

- Two types:
 - Implicitly learned
 - Engineered

Implicitly Learned Features

Word Embeddings
Topic Models
Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation

- Generative probabilistic model that considers two units:
 - Documents
 - Words
- How it works:
 - Randomly assign a topic to each word
 - For each word, assign a new topic based on the likelihood perceived from the current topic/word distribution
 - Repeat until convergence (or until an iteration threshold is met)

	Topic 0	Topic 1	Topic 2		Topic 0	Topic 1	Topic 2
0	0.000	0.000	0.999	Document 0	0.030	0.030	0.939
ø	0.999	0.000	0.000	Document 1	0.939	0.030	0.030
*	0.000	0.999	0.000	Document 2	0.030	0.939	0.030
	Topic 0	Topic 1	Topic 2	Document 3	0.333	0.333	0.333
					Topic 0	Topic 1	Topic 2
Documen Documen							ve Documen ve Documen
	t 1 🕑 🔊 🥑 🥑					T Remo	

Photo Credit: Lettier, https://medium.com/@lettier/how-does-Ida-work-ill-explain-using-emoji-108abf40fa7d

Engineered Features

- Psycholinguistic
 - Concreteness/Imageability
 - Sentiment
- Count-based
 - TFIDF
 - Pointwise Mutual Information
- Syntactic
- Lexical

Psycholinguistic Features

Concreteness/Imageability

How easily "imageable" is the target word?

- "mug" \rightarrow high imageability
- "idea" \rightarrow low imageability

Sentiment

Is this word positive or negative?

- "friendly" \rightarrow positive sentiment
- "cruel" \rightarrow negative sentiment

Psycholinguistic Resources

- Brysbaert Concreteness Ratings: <u>http://crr.ugent.be/archives/1330</u>
- MRC Psycholinguistic Database: <u>http://websites.psychology.uwa.ed</u> <u>u.au/school/MRCDatabase/uwa_</u> <u>mrc.htm</u>
- SentiWordNet: <u>https://sentiwordnet.isti.cnr.it/</u>

(Non-Embedding) Count-based Features

■ TFIDF: Term Frequency * Inverse Document Frequency

- Computes the ratio between the word's frequency in a specific document and its frequency in a corpus as a whole
- PMI: Pointwise Mutual Information
 - Computes the strength of the association between two words

$$TF(x) = \frac{\# \text{ times } x \text{ occurs in document } d}{\# \text{ words in document } d}$$
$$DF(x) = \frac{\# \text{ documents containing } x}{\text{ total } \# \text{ documents}}$$
$$TFIDF(x) = TF(x) \times \log \frac{1}{DF(x)}$$

 $p(x) = \frac{\# \text{ documents containing } x}{\text{total } \# \text{ documents}}$ $p(x, y) = \frac{\# \text{ documents containing } x \text{ and } y}{\text{total } \# \text{ documents}}$ $PMI(x, y) = \log \frac{p(x, y)}{p(x)p(y)}$

Syntactic Features

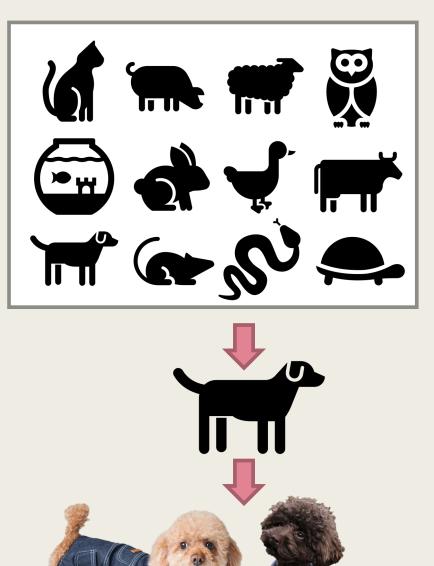
- POS tags
- Dependency parse tags
- Word order
- Word distance (positional)
- Capitalization
- Punctuation
- Character repetition

Lexical Features

- Information from machine-readable dictionaries
 - WordNet:

http://wordnetweb.princeton.edu/perl/ webwn

- Word distance (path from one word to another in a dictionary)
- Hypernym
 - More general category (dog \rightarrow animal)
- Hyponym
 - More specific category (dog \rightarrow poodle)



© 2019 Natalie Parde

The list of features you can use to solve NLP problems is endless!

- Advantages of implicitly-learned features:
 - No need to handcraft anything
 - Can identify patterns that may not be obvious to humans
- Advantages of engineered features:
 - Provides clearer insight into why an approach works/doesn't work
 - Can directly encode ideas from other research fields (e.g., social science)
- Most researchers try out a wide variety of features on a held-out validation set while developing their models
- Many researchers end up combining implicitly-learned and engineered features

NLP APPLICATIONS

© 2019 Natalie Parde

Dialogue Systems/Chatbots

- Two types:
 - Conversational
 - Task-based
- Increasingly pervasive!
 - Siri, Alexa, Google Assistant....
- Typically include components capable of completing the following tasks:
 - Natural language understanding
 - Dialogue management
 - Natural language generation
- Spoken dialogue systems also need to perform automated speech recognition (ASR) and text-to-speech synthesis

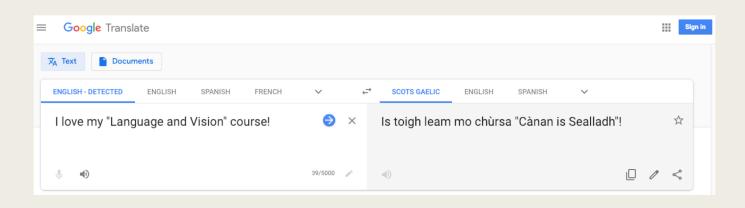
- Dialogue system frameworks:
 - Dialogflow
 - <u>https://dialogflow.com/</u>
 - Wit.ai
 - https://wit.ai/
 - Microsot Bot Framework
 - <u>https://dev.botframework.com/</u>
 - IBM Watson
 - https://www.ibm.com/watson/
 - ChatScript
 - <u>https://github.com/ChatScript/</u> <u>ChatScript</u>

Cognitive Modeling and Psycholinguistics

- Attempting to understand the human mind by simulating cognitive processes using computational models
- "How do people comprehend language?"
- Often incorporates neuroimaging techniques:
 - Electroencephalogram (EEG)
 - Functional magnetic resonance imaging (fMRI)
- For more background reading on these topics, search for resources on cognitive science:
 - <u>http://cognet.mit.edu/</u>
 - <u>https://www.amazon.com/Cognitive-</u> <u>Science-Introduction-</u> <u>Mind/dp/1107653355</u>

Machine Translation

- Automatically translating text from one language to another
- Can be rule-based or statistical
- Statistical machine translation models require large corpora of aligned phrases from two languages
- They learn to predict scores for possible translations using the probabilities of different text alignments



Question Answering

- Automatically interpreting the user's question and retrieving the correct information to provide in response
- In general, QA problems can be broken down such that there are three things associated with a question-answer pair:
 - Context
 - Question
 - Text
- Most QA models today work by matching a context (such as an article) with the question, and then identifying the start and end points of the actual answer within that context

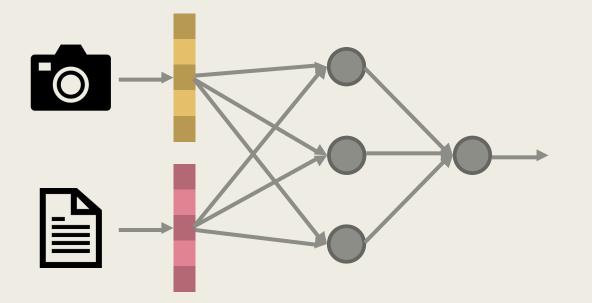
All	News	Shopping	Videos	Images	More	Settir	ngs	Tool
About	251,000,00	0 results (0.58	seconds)					
	n for its s s. David N	Nutter and M	iquel Sapo	ochnik will	be the dire	ctors for the ne	ew sea	ason.
Weis Gam	s, David N ne of Thr	Nutter and M Tones Will R p.com/game-o	eturn in 2	2019 - HB	0.com	About this result		ason. Feedba
Weis Gam https:	s, David N ne of Thr	rones Will R b.com/game-o	eturn in 2	2019 - HB	0.com			
Weis Gam https: Peo	s, David N ne of Thr //www.hbc	rones Will R b.com/game-o	eturn in 2 f-thrones/s	2019 - HB eason-8-retu	O.com Irning-2019			
Weis Gam https: Peo Is Ga	s, David N ne of Thr //www.hbc ple alsc ame of T	ones Will R b.com/game-o b ask	teturn in 2 f-thrones/s ming bac	2019 - HB eason-8-retu k in 2018	O.com Irning-2019			
Weis Gam https: Peo Is Ga Is Ga	s, David N ne of Thr //www.hbo ple also ame of T ame of T	ones Will R b.com/game-o b ask Thrones cor	ning bac	2019 - HB eason-8-retu k in 2018' k?	O.com Irning-2019			

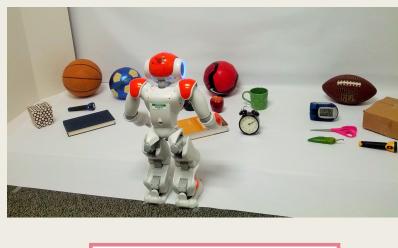
Game of Thrones Will Return in 2019 - HBO.com https://www.hbo.com/game-of-thrones/season-8-returning-2019 -

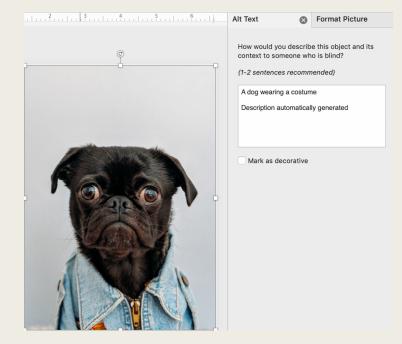
Game of Thrones Will Return in April. The epic fantasy series Game of Thrones will return for its sixepisode, eighth and final season **April 14, 2019**. David Benioff & D.B. Weiss, David Nutter and Miguel Sapochnik will be the directors for the new season.

Multimodal NLP

- Learning word representations using multiple modalities
 - Images, acoustic signals, haptic feedback, etc.
- Aligning text with non-linguistic data
- Very useful in robotics applications and assistive technologies!







Wrapping up....

- Core NLP terminology
 - N-grams, corpus, text normalization, POS tagging, dependency parsing, stemming, lemmatization
- Text similarity
 - Edit distance, cosine similarity
- Word embeddings
 - Word2Vec, GloVe, ELMo
- NLP features
 - Implicitly learned, engineered
- NLP applications
 - Dialogue systems, cognitive modeling, machine translation, question answering, and multimodal NLP
- For much more information about NLP methods and applications, a good starting point:
 - <u>https://web.stanford.edu/~jurafsky/slp3/</u>