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What is natural 
language processing?

The study of language and 
linguistic interactions from 
a computational 
perspective, enabling the 
development of algorithms 
and models capable of (a) 
natural language 
understanding (NLU) and 
(b) natural language 
generation (NLG).
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Core Terminology

■ N-gram

■ Corpus

■ Text Normalization

■ POS Tagging

■ Dependency Parsing

■ Stemming

■ Lemmatization
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N-gram

■ A unit of text, of length n

■ Most common n-grams:
– Unigram
– Bigram
– Trigram
– 4-gram
– 5-gram

■ Text unit can be an individual character 
(useful for language identification) or an 
individual word (useful for text classification)
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Corpus

■ Plural: Corpora

■ Synonym: Dataset

■ A generally large (although this is not a 
requirement) collection of text or speech 
data, used to train machine learning models 
for natural language processing tasks.

■ Example Corpora:
– Google Books N-gram Corpus: 

http://storage.googleapis.com/books/
ngrams/books/datasetsv2.html

– British National Corpus: 
http://www.natcorp.ox.ac.uk/

– Metaphor Novelty Dataset: 
http://hilt.cse.unt.edu/resources.html
#metaphor_novelty_dataset
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Text 
Normalization

■ A sequence of actions applied to 
unstructured text to convert it into a more 
useful form for further text processing.

■ Often includes:
– Sentence segmentation
– Tokenization

■ Depending on task:
– Punctuation removal
– Contraction handling
– URL removal
– Case adjustment

What do you think they’ll do next?

what, do, you, think, they, will, do, next
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POS Tagging

■ Full term: Part-of-Speech Tagging

■ Automatically tagging a token of text with its 
syntactic part of speech

– Part of speech: a category of words 
with similar grammatical properties 
(e.g., nouns)

■ Common POS tag sets:
– Penn Treebank: 

https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_po
s.html

– Universal POS Tags: 
https://universaldependencies.org/u/
pos/

What do you think they’ll do next?
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Dependency 
Parsing

■ Automatically tagging pairs of syntactically 
related words with their grammatical relation 
type

■ Common dependency type sets:
– Universal Dependencies: 

https://universaldependencies.org/
– Stanford Dependencies: 

https://nlp.stanford.edu/software/depe
ndencies_manual.pdf

■ Differs from a constituency parser:
– Dependency parser: Word pairs are 

connected based on syntactic 
relationship

– Constituency parser: Text is broken into a 
hierarchical tree of subphrases, with 
terminal nodes corresponding to words in 
the source text and non-terminal nodes 
corresponding to phrase types
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Stemming

■ Removing identified prefixes and 
suffixes from words

– Flies → fli
– Mules → mule
– Agreed → agre
– Owned → own
– Traditional → tradit

■ Can be done heuristically without a 
dictionary
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Lemmatization

■ Reduces words to their base form
– Flies → fly
– Mules → mule
– Agreed → agree
– Owned → own
– Traditional → tradition

■ Requires a dictionary

■ Lemmatizers are more accurate and 
useful than stemmers, but also much 
more difficult to implement!
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Popular Tools for Core NLP Tasks

Stanford 
CoreNLP

https://stanfordnlp.
github.io/CoreNLP/

NLTK

https://www.nltk.org
/book/

spaCy

https://spacy.io/
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Two Main 
Approaches 

to NLP
RULE-BASED STATISTICAL

© 2019 Natalie Parde



■ Extracting information from text patterns

■ Generating language by filling slots

■ Pros:
– Quicker to implement
– Produces “normal-sounding” text in 

target scenarios
– No processing overhead

■ Cons:
– Heavily constrained
– Only works in target scenarios
– Difficult to generalize across domains

Rule-based 
Natural 
Language 
Processing
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Rule-based Natural Language Processing

■ Often used with chatbots

■ Classic use case: Eliza
– https://www.masswerk.at/elizabot/
– https://youtu.be/RMK9AphfLco
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Statistical Natural Language Processing

■ Much more common for most NLP tasks

■ Uses machine learning to train models from text corpora and applies those models to make predictions 
about new text

■ Pros:
– Scalable
– Higher coverage
– Easier to generalize across domains

■ Cons:
– More development overhead

■ Feature selection, model selection, parameter tuning
– Greater CPU, RAM, and storage needs
– Requires training corpus
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STATISTICAL NATURAL LANGUAGE PROCESSING
Countless applications, many of which are pervasive in day-to-day life
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Think, Pair, Share

■ Write three possible applications of rule-based 
NLP and three possible applications of 
statistical NLP on your notecard

■ Share those ideas with a partner

■ Choose one example of each to share with the 
class

■ Timer: 
https://www.google.com/search?q=timer
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Text Similarity

■ Simplest approach: edit distance

■ How many transformations (insertions, deletions, or substitutions) are necessary to 
change one string into another?

i t i s g e t t i n g c o l d e r

t h e t e m p e r a t u r e i s d r o p p i n g

i i i i i i i i i i i s s s s s s s s s s s s d d d d
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Text Similarity

■ Common approach: cosine similarity

■ Assuming each word in the vocabulary is represented as a point in space, how 
similar are the vectors representing two sentences?

it is getting colder the temperature dropping

S1: It is getting colder. 1 1 1 1 0 0 0

S2: The temperature 
is dropping.

0 1 0 0 1 1 1

sim S1, S2 = S1 ⋅ S2
S1 S2 = ∑+,-. S1+S2+

∑+,-. S1+/ ∑+,-. S2+/
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Text Similarity

■ What are these approaches missing?
– Synonyms
– Paraphrases
– These approaches compute lexical similarity, but are ignoring 

semantic similarity!

It is getting colder. The temperature is 
dropping.≈
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WORD EMBEDDINGS
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Word Embeddings

■ Vectors that refer to a word’s point in a multidimensional semantic space

■ Can be of any size
– Most common size: 100 or 300 dimensions

■ Learned automatically from massive text corpora

cake 1 0 1 1 0

0 0 0 1 0

1 1 1 0 1

1 0 1 1 1

airplane

professor

pie
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Word Embeddings

■ Lots of different varieties

■ Some of the most popular:
– Word2Vec
– GloVe
– ELMo

Photo Credit: tiffany terry, https://flic.kr/p/612Hvh © 2019 Natalie Parde
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Word2Vec

■ Model learns n-dimensional embeddings for 
two types of vectors:

– Words
– Contexts

■ Weights for all vectors are initialized to 
random small numbers

■ Weights are updated over time as learning 
progresses

■ When Word2Vec finishes, the weights 
associated with the word vectors are 
returned as the embeddings and the weights 
associated with the context vectors are 
discarded

Winters in Chicago are cold.

wc c c c
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Word2Vec
■ Word2Vec essentially creates a neural network that we don’t really need …all we’re 

interested in are the learned weights!

■ Assuming that ! is an activation function in the output layer of the neural network, 
and assuming "# ∈ % is a context word vector associated with a target word vector &, 
Word2Vec computes the following:

– ∑()∈* !(& ⋅ "#)
■ The goal is to learn weights for & and all "# ∈ % such that:

– The value resulting when & is the target word is high
– The value resulting when & is not the target word is low

Winters in Chicago are cold. Winters in Phoenix are cold.

© 2019 Natalie Parde



Word2Vec

■ Embeddings can be learned in one of two ways:
– Continuous Bag of Words (CBOW): Predict a word given a 

context
– Skip-gram: Predict a context given a word

winters

in

are

cold

Chicago

winters

in

are

cold

Chicago

CBOW Skip-gram
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Word2Vec
■ The weights can also be updated using a couple different strategies:

– Negative Sampling: Randomly sample negative target words rather 
than computing values for all possible target words

– Hierarchical Softmax: Iterate through a binary tree in which nodes 
are weight vectors and leaves are target words—learn weights that 
are close to those on the correct path to the target word

Chicago

boat

happy
Phoenix

tornado

very

Chicago Milwaukee Amsterdam Phoenix

Negative Sampling Hierarchical Softmax
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Count-based Embedding Models

it is freezing cold winters in chicago are phoenix warm

it 0 1 1 1 0 0 0 0 0 0

is 1 0 1 1 0 0 0 0 0 0

freezing 1 1 0 1 0 0 0 0 0 0

cold 1 1 1 0 1 1 1 1 0 0

winters 0 0 0 1 0 2 1 2 1 1

in 0 0 0 1 2 0 1 2 1 1

chicago 0 0 0 1 1 1 0 1 0 0

are 0 0 0 1 2 2 1 0 1 1

phoenix 0 0 0 0 1 1 0 1 0 1

warm 0 0 0 0 1 1 0 1 1 0

It is freezing cold. Winters in Chicago are cold. Winters in Phoenix are warm.
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GloVe

■ Co-occurrence matrices quickly grow extremely large

■ Intuitive solution to increase scalability → dimensionality 
reduction

– However, typical dimensionality reduction strategies may 
result in too much computational overhead

■ GloVe combines aspects of predictive models (e.g., Word2Vec) and 
count-based models

■ Learns to predict weights that correspond to the co-occurrence 
probabilities between words

– Specifically: The dot product between two words’ vectors 
should equal the logarithm of their probability of co-
occurrence
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GloVe

■ Why is this useful?
– Predictive models → black box
■ They work, but why?

– GloVe models are easier to interpret

■ GloVe models also encode the ratios of co-occurrence probabilities 
between different words …this makes these vectors useful for 
word analogy tasks

ice steam

solid gaswater
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ELMo
■ Full Term: Embeddings from Language Models

■ Accepts character inputs instead of words, which enables the model to predict 
embeddings for out-of-vocabulary words

■ Concatenates information from multiple layers of a bidirectional language model
– A model that predicts the next word in a sequence of words, given the words 

that precede it

■ This allows ELMo to store multiple representations of the same word!

■ Predicts an embedding for a target word given its context

bank bank

0.2 0.3 0.1 0.2 0.5 0.1 0.1 0.6 0.2 0.4
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Which 
embeddings 

are best?

■ It depends on your data!

■ In general, Word2Vec and GloVe
produce similar embeddings

■ Word2Vec → slower to train but less 
memory intensive

■ GloVe→ faster to train but more 
memory intensive

■ Word2Vec and Glove both produce 
context-independent embeddings

■ ELMo produces context-dependent 
embeddings

■ ELMo can predict embeddings for 
new words
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Think, Pair, Share
■ Write three possible use cases for word embeddings 

on your notecard.  For each one, indicate what type 
of word embeddings you think would work best for 
the task:

– Word2Vec, GloVe, or ELMo?  (Some other type 
of embedding entirely?)

– What dataset would they be trained on?  
(Google Books?  Wikipedia?  A corpus of news 
articles?  Something else?)

– If GloVe, any preference between (CBOW X 
Skip-gram) X (Negative Sampling X 
Hierarchical Softmax)?

■ Discuss these use cases with a partner.  Did your 
partner propose different word embeddings for a 
similar task?

■ Share some clear agreements or differences of 
opinion with the class.

■ Timer: https://www.google.com/search?q=timer
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You can experiment with all of these 
embedding models yourself!

Word2Vec:
Code: 

https://github.com/tmikolov/wo
rd2vec

Pretrained Embeddings: 
https://code.google.com/archiv

e/p/word2vec/

GloVe:
Code: 

https://github.com/stanfordnlp
/GloVe

Pretrained Embeddings: (same 
website)

ELMo:
Code (AllenNLP version): 

https://github.com/allenai/alle
nnlp/blob/master/tutorials/how

_to/elmo.md
Code (TensorFlow version): 

https://github.com/allenai/bilm
-tf

Pretrained Embeddings: 
https://allennlp.org/elmo
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NLP Features

■ Two types:
– Implicitly learned
– Engineered
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Implicitly 
Learned 
Features

Word Embeddings

Topic Models

■ Latent Dirichlet 
Allocation (LDA)
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Latent Dirichlet Allocation

■ Generative probabilistic model that 
considers two units:

– Documents
– Words

■ How it works:
– Randomly assign a topic to each 

word
– For each word, assign a new topic 

based on the likelihood perceived 
from the current topic/word 
distribution

– Repeat until convergence (or until an 
iteration threshold is met)

Photo Credit: Lettier, https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d
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Engineered Features

■ Psycholinguistic
– Concreteness/Imageability
– Sentiment

■ Count-based
– TFIDF
– Pointwise Mutual Information

■ Syntactic

■ Lexical

© 2019 Natalie Parde



Psycholinguistic Features

Concreteness/Imageability
How easily “imageable” is the target word?
• “mug” → high imageability
• “idea” → low imageability

Sentiment
Is this word positive or negative?
• “friendly” → positive sentiment
• “cruel” → negative sentiment
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Psycholinguistic Resources

■ Brysbaert Concreteness Ratings: 
http://crr.ugent.be/archives/1330

■ MRC Psycholinguistic Database: 
http://websites.psychology.uwa.ed
u.au/school/MRCDatabase/uwa_
mrc.htm

■ SentiWordNet: 
https://sentiwordnet.isti.cnr.it/
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(Non-Embedding) Count-based Features

■ TFIDF: Term Frequency * Inverse Document Frequency
– Computes the ratio between the word’s frequency in a specific document and 

its frequency in a corpus as a whole

■ PMI: Pointwise Mutual Information
– Computes the strength of the association between two words

TF # = # times x occurs in document 2
# words in document 2

DF # = # documents containing #
total # documents

TFIDF # = TF # × log 1
DF(#)

p # = # documents containing #
total # documents

p #, ? = # documents containing # and ?
total # documents

PMI #, ? = log p(#, ?)
p # p(?)
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Syntactic Features

■ POS tags

■ Dependency parse tags

■ Word order

■ Word distance (positional)

■ Capitalization

■ Punctuation

■ Character repetition
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Lexical Features
■ Information from machine-readable 

dictionaries
– WordNet: 

http://wordnetweb.princeton.edu/perl/
webwn

■ Word distance (path from one word to 
another in a dictionary)

■ Hypernym
– More general category (dog → animal)

■ Hyponym
– More specific category (dog → poodle)
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The list of 
features you 

can use to 
solve NLP 

problems is 
endless!

■ Advantages of implicitly-learned 
features:

– No need to handcraft anything
– Can identify patterns that may not 

be obvious to humans

■ Advantages of engineered features:
– Provides clearer insight into why an 

approach works/doesn’t work
– Can directly encode ideas from 

other research fields (e.g., social 
science)

■ Most researchers try out a wide variety 
of features on a held-out validation set 
while developing their models

■ Many researchers end up combining 
implicitly-learned and engineered 
features
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NLP APPLICATIONS
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Dialogue Systems/Chatbots

■ Two types:
– Conversational
– Task-based

■ Increasingly pervasive!
– Siri, Alexa, Google Assistant….

■ Typically include components capable 
of completing the following tasks:

– Natural language understanding
– Dialogue management
– Natural language generation

■ Spoken dialogue systems also need 
to perform automated speech 
recognition (ASR) and text-to-speech 
synthesis

■ Dialogue system frameworks:
– Dialogflow

■ https://dialogflow.com/
– Wit.ai

■ https://wit.ai/
– Microsot Bot Framework

■ https://dev.botframework.com/
– IBM Watson

■ https://www.ibm.com/watson/
– ChatScript

■ https://github.com/ChatScript/
ChatScript
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Cognitive Modeling and Psycholinguistics
■ Attempting to understand the human mind by 

simulating cognitive processes using 
computational models

■ “How do people comprehend language?”

■ Often incorporates neuroimaging techniques:
– Electroencephalogram (EEG)
– Functional magnetic resonance imaging 

(fMRI)

■ For more background reading on these topics, 
search for resources on cognitive science:

– http://cognet.mit.edu/
– https://www.amazon.com/Cognitive-

Science-Introduction-
Mind/dp/1107653355
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Machine Translation
■ Automatically translating 

text from one language to 
another

■ Can be rule-based or 
statistical

■ Statistical machine 
translation models require 
large corpora of aligned 
phrases from two 
languages

■ They learn to predict 
scores for possible 
translations using the 
probabilities of different 
text alignments
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Question Answering
■ Automatically interpreting the user’s 

question and retrieving the correct 
information to provide in response

■ In general, QA problems can be broken 
down such that there are three things 
associated with a question-answer 
pair:

– Context
– Question
– Text

■ Most QA models today work by 
matching a context (such as an article) 
with the question, and then identifying 
the start and end points of the actual 
answer within that context
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Multimodal NLP
■ Learning word representations using multiple 

modalities
– Images, acoustic signals, haptic feedback, etc.

■ Aligning text with non-linguistic data

■ Very useful in robotics applications and assistive 
technologies!

Boarding my ✈ to go 
to "!!! #$
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Wrapping 
up….

■ Core NLP terminology
– N-grams, corpus, text normalization, POS 

tagging, dependency parsing, stemming, 
lemmatization

■ Text similarity
– Edit distance, cosine similarity

■ Word embeddings
– Word2Vec, GloVe, ELMo

■ NLP features
– Implicitly learned, engineered

■ NLP applications
– Dialogue systems, cognitive modeling, 

machine translation, question answering, 
and multimodal NLP

■ For much more information about NLP methods 
and applications, a good starting point: 

– https://web.stanford.edu/~jurafsky/slp3/
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