
INTRODUCTION
TO NATURAL

LANGUAGE
PROCESSING

Natalie Parde
parde@uic.edu

CS 594: Language and Vision
Spring 2019

mailto:parde@uic.edu

What is natural
language processing?

The study of language and
linguistic interactions from
a computational
perspective, enabling the
development of algorithms
and models capable of (a)
natural language
understanding (NLU) and
(b) natural language
generation (NLG).

© 2019 Natalie Parde

Core Terminology

■ N-gram

■ Corpus

■ Text Normalization

■ POS Tagging

■ Dependency Parsing

■ Stemming

■ Lemmatization

© 2019 Natalie Parde

N-gram

■ A unit of text, of length n

■ Most common n-grams:
– Unigram
– Bigram
– Trigram
– 4-gram
– 5-gram

■ Text unit can be an individual character
(useful for language identification) or an
individual word (useful for text classification)

© 2019 Natalie Parde

Corpus

■ Plural: Corpora

■ Synonym: Dataset

■ A generally large (although this is not a
requirement) collection of text or speech
data, used to train machine learning models
for natural language processing tasks.

■ Example Corpora:
– Google Books N-gram Corpus:

http://storage.googleapis.com/books/
ngrams/books/datasetsv2.html

– British National Corpus:
http://www.natcorp.ox.ac.uk/

– Metaphor Novelty Dataset:
http://hilt.cse.unt.edu/resources.html
#metaphor_novelty_dataset

© 2019 Natalie Parde

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://www.natcorp.ox.ac.uk/
http://hilt.cse.unt.edu/resources.html

Text
Normalization

■ A sequence of actions applied to
unstructured text to convert it into a more
useful form for further text processing.

■ Often includes:
– Sentence segmentation
– Tokenization

■ Depending on task:
– Punctuation removal
– Contraction handling
– URL removal
– Case adjustment

What do you think they’ll do next?

what, do, you, think, they, will, do, next
© 2019 Natalie Parde

POS Tagging

■ Full term: Part-of-Speech Tagging

■ Automatically tagging a token of text with its
syntactic part of speech

– Part of speech: a category of words
with similar grammatical properties
(e.g., nouns)

■ Common POS tag sets:
– Penn Treebank:

https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_po
s.html

– Universal POS Tags:
https://universaldependencies.org/u/
pos/

What do you think they’ll do next?

© 2019 Natalie Parde

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://universaldependencies.org/u/pos/

Dependency
Parsing

■ Automatically tagging pairs of syntactically
related words with their grammatical relation
type

■ Common dependency type sets:
– Universal Dependencies:

https://universaldependencies.org/
– Stanford Dependencies:

https://nlp.stanford.edu/software/depe
ndencies_manual.pdf

■ Differs from a constituency parser:
– Dependency parser: Word pairs are

connected based on syntactic
relationship

– Constituency parser: Text is broken into a
hierarchical tree of subphrases, with
terminal nodes corresponding to words in
the source text and non-terminal nodes
corresponding to phrase types

© 2019 Natalie Parde

https://universaldependencies.org/
https://nlp.stanford.edu/software/dependencies_manual.pdf

Stemming

■ Removing identified prefixes and
suffixes from words

– Flies → fli
– Mules → mule
– Agreed → agre
– Owned → own
– Traditional → tradit

■ Can be done heuristically without a
dictionary

© 2019 Natalie Parde

Lemmatization

■ Reduces words to their base form
– Flies → fly
– Mules → mule
– Agreed → agree
– Owned → own
– Traditional → tradition

■ Requires a dictionary

■ Lemmatizers are more accurate and
useful than stemmers, but also much
more difficult to implement!

© 2019 Natalie Parde

Popular Tools for Core NLP Tasks

Stanford
CoreNLP

https://stanfordnlp.
github.io/CoreNLP/

NLTK

https://www.nltk.org
/book/

spaCy

https://spacy.io/

© 2019 Natalie Parde

https://stanfordnlp.github.io/CoreNLP/
https://www.nltk.org/book/
https://spacy.io/

Two Main
Approaches

to NLP
RULE-BASED STATISTICAL

© 2019 Natalie Parde

■ Extracting information from text patterns

■ Generating language by filling slots

■ Pros:
– Quicker to implement
– Produces “normal-sounding” text in

target scenarios
– No processing overhead

■ Cons:
– Heavily constrained
– Only works in target scenarios
– Difficult to generalize across domains

Rule-based
Natural
Language
Processing

© 2019 Natalie Parde

Rule-based Natural Language Processing

■ Often used with chatbots

■ Classic use case: Eliza
– https://www.masswerk.at/elizabot/
– https://youtu.be/RMK9AphfLco

© 2019 Natalie Parde

https://www.masswerk.at/elizabot/
https://youtu.be/RMK9AphfLco

Statistical Natural Language Processing

■ Much more common for most NLP tasks

■ Uses machine learning to train models from text corpora and applies those models to make predictions
about new text

■ Pros:
– Scalable
– Higher coverage
– Easier to generalize across domains

■ Cons:
– More development overhead

■ Feature selection, model selection, parameter tuning
– Greater CPU, RAM, and storage needs
– Requires training corpus

© 2019 Natalie Parde

STATISTICAL NATURAL LANGUAGE PROCESSING
Countless applications, many of which are pervasive in day-to-day life

© 2019 Natalie Parde

Think, Pair, Share

■ Write three possible applications of rule-based
NLP and three possible applications of
statistical NLP on your notecard

■ Share those ideas with a partner

■ Choose one example of each to share with the
class

■ Timer:
https://www.google.com/search?q=timer

© 2019 Natalie Parde

https://www.google.com/search?q=timer

Text Similarity

■ Simplest approach: edit distance

■ How many transformations (insertions, deletions, or substitutions) are necessary to
change one string into another?

i t i s g e t t i n g c o l d e r

t h e t e m p e r a t u r e i s d r o p p i n g

i i i i i i i i i i i s s s s s s s s s s s s d d d d

© 2019 Natalie Parde

Text Similarity

■ Common approach: cosine similarity

■ Assuming each word in the vocabulary is represented as a point in space, how
similar are the vectors representing two sentences?

it is getting colder the temperature dropping

S1: It is getting colder. 1 1 1 1 0 0 0

S2: The temperature
is dropping.

0 1 0 0 1 1 1

sim S1, S2 = S1 ⋅ S2
S1 S2 = ∑+,-. S1+S2+

∑+,-. S1+/ ∑+,-. S2+/

© 2019 Natalie Parde

Text Similarity

■ What are these approaches missing?
– Synonyms
– Paraphrases
– These approaches compute lexical similarity, but are ignoring

semantic similarity!

It is getting colder. The temperature is
dropping.≈

© 2019 Natalie Parde

WORD EMBEDDINGS

© 2019 Natalie Parde

Word Embeddings

■ Vectors that refer to a word’s point in a multidimensional semantic space

■ Can be of any size
– Most common size: 100 or 300 dimensions

■ Learned automatically from massive text corpora

cake 1 0 1 1 0

0 0 0 1 0

1 1 1 0 1

1 0 1 1 1

airplane

professor

pie

© 2019 Natalie Parde

Word Embeddings

■ Lots of different varieties

■ Some of the most popular:
– Word2Vec
– GloVe
– ELMo

Photo Credit: tiffany terry, https://flic.kr/p/612Hvh © 2019 Natalie Parde

https://flic.kr/p/612Hvh

Word2Vec

■ Model learns n-dimensional embeddings for
two types of vectors:

– Words
– Contexts

■ Weights for all vectors are initialized to
random small numbers

■ Weights are updated over time as learning
progresses

■ When Word2Vec finishes, the weights
associated with the word vectors are
returned as the embeddings and the weights
associated with the context vectors are
discarded

Winters in Chicago are cold.

wc c c c

© 2019 Natalie Parde

Word2Vec
■ Word2Vec essentially creates a neural network that we don’t really need …all we’re

interested in are the learned weights!

■ Assuming that ! is an activation function in the output layer of the neural network,
and assuming "# ∈ % is a context word vector associated with a target word vector &,
Word2Vec computes the following:

– ∑()∈* !(& ⋅ "#)
■ The goal is to learn weights for & and all "# ∈ % such that:

– The value resulting when & is the target word is high
– The value resulting when & is not the target word is low

Winters in Chicago are cold. Winters in Phoenix are cold.

© 2019 Natalie Parde

Word2Vec

■ Embeddings can be learned in one of two ways:
– Continuous Bag of Words (CBOW): Predict a word given a

context
– Skip-gram: Predict a context given a word

winters

in

are

cold

Chicago

winters

in

are

cold

Chicago

CBOW Skip-gram

© 2019 Natalie Parde

Word2Vec
■ The weights can also be updated using a couple different strategies:

– Negative Sampling: Randomly sample negative target words rather
than computing values for all possible target words

– Hierarchical Softmax: Iterate through a binary tree in which nodes
are weight vectors and leaves are target words—learn weights that
are close to those on the correct path to the target word

Chicago

boat

happy
Phoenix

tornado

very

Chicago Milwaukee Amsterdam Phoenix

Negative Sampling Hierarchical Softmax

© 2019 Natalie Parde

Count-based Embedding Models

it is freezing cold winters in chicago are phoenix warm

it 0 1 1 1 0 0 0 0 0 0

is 1 0 1 1 0 0 0 0 0 0

freezing 1 1 0 1 0 0 0 0 0 0

cold 1 1 1 0 1 1 1 1 0 0

winters 0 0 0 1 0 2 1 2 1 1

in 0 0 0 1 2 0 1 2 1 1

chicago 0 0 0 1 1 1 0 1 0 0

are 0 0 0 1 2 2 1 0 1 1

phoenix 0 0 0 0 1 1 0 1 0 1

warm 0 0 0 0 1 1 0 1 1 0

It is freezing cold. Winters in Chicago are cold. Winters in Phoenix are warm.

© 2019 Natalie Parde

GloVe

■ Co-occurrence matrices quickly grow extremely large

■ Intuitive solution to increase scalability → dimensionality
reduction

– However, typical dimensionality reduction strategies may
result in too much computational overhead

■ GloVe combines aspects of predictive models (e.g., Word2Vec) and
count-based models

■ Learns to predict weights that correspond to the co-occurrence
probabilities between words

– Specifically: The dot product between two words’ vectors
should equal the logarithm of their probability of co-
occurrence

© 2019 Natalie Parde

GloVe

■ Why is this useful?
– Predictive models → black box
■ They work, but why?

– GloVe models are easier to interpret

■ GloVe models also encode the ratios of co-occurrence probabilities
between different words …this makes these vectors useful for
word analogy tasks

ice steam

solid gaswater

© 2019 Natalie Parde

ELMo
■ Full Term: Embeddings from Language Models

■ Accepts character inputs instead of words, which enables the model to predict
embeddings for out-of-vocabulary words

■ Concatenates information from multiple layers of a bidirectional language model
– A model that predicts the next word in a sequence of words, given the words

that precede it

■ This allows ELMo to store multiple representations of the same word!

■ Predicts an embedding for a target word given its context

bank bank

0.2 0.3 0.1 0.2 0.5 0.1 0.1 0.6 0.2 0.4

© 2019 Natalie Parde

Which
embeddings

are best?

■ It depends on your data!

■ In general, Word2Vec and GloVe
produce similar embeddings

■ Word2Vec → slower to train but less
memory intensive

■ GloVe→ faster to train but more
memory intensive

■ Word2Vec and Glove both produce
context-independent embeddings

■ ELMo produces context-dependent
embeddings

■ ELMo can predict embeddings for
new words

© 2019 Natalie Parde

Think, Pair, Share
■ Write three possible use cases for word embeddings

on your notecard. For each one, indicate what type
of word embeddings you think would work best for
the task:

– Word2Vec, GloVe, or ELMo? (Some other type
of embedding entirely?)

– What dataset would they be trained on?
(Google Books? Wikipedia? A corpus of news
articles? Something else?)

– If GloVe, any preference between (CBOW X
Skip-gram) X (Negative Sampling X
Hierarchical Softmax)?

■ Discuss these use cases with a partner. Did your
partner propose different word embeddings for a
similar task?

■ Share some clear agreements or differences of
opinion with the class.

■ Timer: https://www.google.com/search?q=timer

© 2019 Natalie Parde

https://www.google.com/search?q=timer

You can experiment with all of these
embedding models yourself!

Word2Vec:
Code:

https://github.com/tmikolov/wo
rd2vec

Pretrained Embeddings:
https://code.google.com/archiv

e/p/word2vec/

GloVe:
Code:

https://github.com/stanfordnlp
/GloVe

Pretrained Embeddings: (same
website)

ELMo:
Code (AllenNLP version):

https://github.com/allenai/alle
nnlp/blob/master/tutorials/how

_to/elmo.md
Code (TensorFlow version):

https://github.com/allenai/bilm
-tf

Pretrained Embeddings:
https://allennlp.org/elmo

© 2019 Natalie Parde

https://github.com/tmikolov/word2vec
https://code.google.com/archive/p/word2vec/
https://github.com/stanfordnlp/GloVe
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://github.com/allenai/bilm-tf
https://allennlp.org/elmo

NLP Features

■ Two types:
– Implicitly learned
– Engineered

© 2019 Natalie Parde

Implicitly
Learned
Features

Word Embeddings

Topic Models

■ Latent Dirichlet
Allocation (LDA)

© 2019 Natalie Parde

Latent Dirichlet Allocation

■ Generative probabilistic model that
considers two units:

– Documents
– Words

■ How it works:
– Randomly assign a topic to each

word
– For each word, assign a new topic

based on the likelihood perceived
from the current topic/word
distribution

– Repeat until convergence (or until an
iteration threshold is met)

Photo Credit: Lettier, https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d

© 2019 Natalie Parde

https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d

Engineered Features

■ Psycholinguistic
– Concreteness/Imageability
– Sentiment

■ Count-based
– TFIDF
– Pointwise Mutual Information

■ Syntactic

■ Lexical

© 2019 Natalie Parde

Psycholinguistic Features

Concreteness/Imageability
How easily “imageable” is the target word?
• “mug” → high imageability
• “idea” → low imageability

Sentiment
Is this word positive or negative?
• “friendly” → positive sentiment
• “cruel” → negative sentiment

© 2019 Natalie Parde

Psycholinguistic Resources

■ Brysbaert Concreteness Ratings:
http://crr.ugent.be/archives/1330

■ MRC Psycholinguistic Database:
http://websites.psychology.uwa.ed
u.au/school/MRCDatabase/uwa_
mrc.htm

■ SentiWordNet:
https://sentiwordnet.isti.cnr.it/

© 2019 Natalie Parde

http://crr.ugent.be/archives/1330
http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
https://sentiwordnet.isti.cnr.it/

(Non-Embedding) Count-based Features

■ TFIDF: Term Frequency * Inverse Document Frequency
– Computes the ratio between the word’s frequency in a specific document and

its frequency in a corpus as a whole

■ PMI: Pointwise Mutual Information
– Computes the strength of the association between two words

TF # = # times x occurs in document 2
words in document 2

DF # = # documents containing #
total # documents

TFIDF # = TF # × log 1
DF(#)

p # = # documents containing #
total # documents

p #, ? = # documents containing # and ?
total # documents

PMI #, ? = log p(#, ?)
p # p(?)

© 2019 Natalie Parde

Syntactic Features

■ POS tags

■ Dependency parse tags

■ Word order

■ Word distance (positional)

■ Capitalization

■ Punctuation

■ Character repetition

© 2019 Natalie Parde

Lexical Features
■ Information from machine-readable

dictionaries
– WordNet:

http://wordnetweb.princeton.edu/perl/
webwn

■ Word distance (path from one word to
another in a dictionary)

■ Hypernym
– More general category (dog → animal)

■ Hyponym
– More specific category (dog → poodle)

© 2019 Natalie Parde

http://wordnetweb.princeton.edu/perl/webwn

The list of
features you

can use to
solve NLP

problems is
endless!

■ Advantages of implicitly-learned
features:

– No need to handcraft anything
– Can identify patterns that may not

be obvious to humans

■ Advantages of engineered features:
– Provides clearer insight into why an

approach works/doesn’t work
– Can directly encode ideas from

other research fields (e.g., social
science)

■ Most researchers try out a wide variety
of features on a held-out validation set
while developing their models

■ Many researchers end up combining
implicitly-learned and engineered
features

© 2019 Natalie Parde

NLP APPLICATIONS

© 2019 Natalie Parde

Dialogue Systems/Chatbots

■ Two types:
– Conversational
– Task-based

■ Increasingly pervasive!
– Siri, Alexa, Google Assistant….

■ Typically include components capable
of completing the following tasks:

– Natural language understanding
– Dialogue management
– Natural language generation

■ Spoken dialogue systems also need
to perform automated speech
recognition (ASR) and text-to-speech
synthesis

■ Dialogue system frameworks:
– Dialogflow

■ https://dialogflow.com/
– Wit.ai

■ https://wit.ai/
– Microsot Bot Framework

■ https://dev.botframework.com/
– IBM Watson

■ https://www.ibm.com/watson/
– ChatScript

■ https://github.com/ChatScript/
ChatScript

© 2019 Natalie Parde

https://dialogflow.com/
https://wit.ai/
https://dev.botframework.com/
https://www.ibm.com/watson/
https://github.com/ChatScript/ChatScript

Cognitive Modeling and Psycholinguistics
■ Attempting to understand the human mind by

simulating cognitive processes using
computational models

■ “How do people comprehend language?”

■ Often incorporates neuroimaging techniques:
– Electroencephalogram (EEG)
– Functional magnetic resonance imaging

(fMRI)

■ For more background reading on these topics,
search for resources on cognitive science:

– http://cognet.mit.edu/
– https://www.amazon.com/Cognitive-

Science-Introduction-
Mind/dp/1107653355

© 2019 Natalie Parde

http://cognet.mit.edu/
https://www.amazon.com/Cognitive-Science-Introduction-Mind/dp/1107653355

Machine Translation
■ Automatically translating

text from one language to
another

■ Can be rule-based or
statistical

■ Statistical machine
translation models require
large corpora of aligned
phrases from two
languages

■ They learn to predict
scores for possible
translations using the
probabilities of different
text alignments

© 2019 Natalie Parde

Question Answering
■ Automatically interpreting the user’s

question and retrieving the correct
information to provide in response

■ In general, QA problems can be broken
down such that there are three things
associated with a question-answer
pair:

– Context
– Question
– Text

■ Most QA models today work by
matching a context (such as an article)
with the question, and then identifying
the start and end points of the actual
answer within that context

© 2019 Natalie Parde

Multimodal NLP
■ Learning word representations using multiple

modalities
– Images, acoustic signals, haptic feedback, etc.

■ Aligning text with non-linguistic data

■ Very useful in robotics applications and assistive
technologies!

Boarding my ✈ to go
to "!!! #$

© 2019 Natalie Parde

Wrapping
up….

■ Core NLP terminology
– N-grams, corpus, text normalization, POS

tagging, dependency parsing, stemming,
lemmatization

■ Text similarity
– Edit distance, cosine similarity

■ Word embeddings
– Word2Vec, GloVe, ELMo

■ NLP features
– Implicitly learned, engineered

■ NLP applications
– Dialogue systems, cognitive modeling,

machine translation, question answering,
and multimodal NLP

■ For much more information about NLP methods
and applications, a good starting point:

– https://web.stanford.edu/~jurafsky/slp3/

© 2019 Natalie Parde

https://web.stanford.edu/~jurafsky/slp3/

